

Hacking the Wireless World: Software Defined Radio Exploits Balint Seeber

Director of Vulnerability Research

Bastille

Overview

FMCW & Passive RADAR

FPV Decoding

FNCW RADAR

Hacking the Wireless World with #sdr

@spenchdotnet

Primary Surveillance RADAR (PSR)

Scope Plot Est See Est	Persistence	Scope Plot	Aref of Alorities (19994
and the second	Axes Options 0.7		Axes Options Secs/Div: +
	Counts/Div: + - 0.6		Counts/Div: +
	Y Offset: + -		Y Offset: +
	T Offset		T Offset: ()
	Autorange		Autorange
	Channel Options		Channel Options
مفتيل ويتحصر المستعقبين ومتحد والمروم وتبال مترجعها	4 Ch2 Ch3 TH9 0.3	مراجعين والمرجبين والمتحدثين وميرة والاصراف المراجعين	Ch1 Ch2 Trig XY
	Mode: Normal \$		
	Slope Pos + +		Coupling: DC
	Channel: Ch 1 : 0.1		
	Level: 50% + -	man man man	Marker: Line Link
130 140 150 160 170		10 15 20 25 30 35	40
Time (us)	Stop	Time (ms)	Stop
	Scope Piot	Scope Piot Axes Options Axes Options Secs/Dive Counts/Dive + Y Offset: - Y Offset: - </td <td>Scope Piot Scope Piot Area Options </td>	Scope Piot Scope Piot Area Options

RADAR Range

PRF / PRI: Pulse Repetition Frequency / Interval

в

- Pulse of width TX'd at PRF, switch to RX during idle
- Time delay = RTT
- Range = RTT x c / 2 \mathbb{A}
- A: Unambiguous
- **B**: Ambiguous

http://www.rfcafe.com/references/electrical/ewradar-handbook/propagation-time-resolution.htm

Raw RADAR Return Plot

Each scanline is synchronised to an emitted pulse

Scanline is amplitude of samples over time (also range of the return)

Virtual RADAR Scope

Bridge

O

Lots of clutter

Map

Traffic

Bridges & pipeline

0

Power line pylons crossing the bay

Palo Alto

RADAR

San Jose,

More clutter

63

Example (simple impulsion): transmitted signal in red (carrier 10 hertz, amplitude 1, duration 1 second) and two echoes (in blue).

...echoes can be distinguished.

5

After matched filtering

FMCW

- Transmit a 'chirp' (strong self-correlation)
- Can be full TX duty cycle
- Think about chirp as a matched filter (not a VCO)
 Filtered result is range information
 like normal CW pulsed echos

Signal Flow (Continuous / Full Duty Cycle)

In RF plumbing: can remove locally RX'd TX signal, only hear echoes (make better use of ADC dynamic range)

Signal Flow (Continuous / Full Duty Cycle)

FMCW in the Frequency Domain

FMCW in the Frequency Domain (De-chirped)

TX Chirp RX Echo Frequency change implies time (and therefore range)

FMCW in the Frequency Domain (De-chirped, FFT)

	TX Chirp RX Echo	FFT size = # samples in one c	hirp
	[]	One bin = duration of one san	npie
•			
•		· · · · · · · · · · · · · · · · · · ·	
•			
•			
•			
•			
•			
•			
•			
• •			
•	• • • • • • • • • • • • • • • • • • • •		Bin 5
•			DITO
•			
•			
•			Bin 1
-	• • • • • • • • • • • • • • • • • • • •		Bin 0

FMCW in the Frequency Domain (De-chirped, FFT)

TX Chirp RX Echo Moving targets **RX Echo**

Many Variables

- Sample Rate: sets sample duration, limits range resolution
- Chirp length: sets PRF, limits unambiguous range
- TX/RX geometry: monostatic/bistatic, sets path (signal propagation/time model)

http://www.rfwireless-world.com/Terminology/Monostatic-radar-vs-Bistatic-radar.html

Many Variables

- RF: speed of light (fast)
- Time of one sample: large distance
- Increased sample rate: better range resolution

n-1 0 1 2 3 4 n-2 n-1	
-----------------------	--

Time

N range (FFT) bins (each one sample duration) Energy in each: reflected energy at that (RTT) time

Hidden Returns

- Multiple targets end up in same range bin
- Target echo is too weak, swamped by local TX/clutter
- Any other information we can use to disambiguate?

Doppler Effect

- Moving target will cause slight shift in received frequency
- Think about wavefront being received after reflection off target: phase change due to motion

https://en.wikipedia.org/wiki/Doppler_effect

- Collect multiple return periods (requires Integration Time)
- FFT across each range bin
- Velocity information for targets (w.r.t. RADAR system!)

Doppler Processing (Integration Period)

p1 (1) Changing phase over integration period

Content of the second secon

Successive periods

p2

рЗ

p4

 $\bigcirc \bigcirc \bigcirc$

 $\xrightarrow{\uparrow}_{Q} /$

Changing phase over time = ?

Row: range (FFT) bins Column: same range bin over integration period

One Chirp (sample time)

0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7

- Fill in rows, read out columns
- Interleaver! (read out more frequently for faster updates)

Speed of Light

 Range resolution too low

Frequency (Hz):	1500000000000
Frequency (MHz):	1500.0
Wavelength (m):	0.2
Range resolution (m):	150.0
PRF (Hz):	100.0
Pulse duration (s):	0.01
Pulse duration (ms):	10.0
BW (Hz):	200000.0
BW (kHz):	2000.0
Unambiguous range (m):	1500000.0
Unambiguous range (km):	1500.0
Samples in plot:	512
Max range in plot (m):	38400.0
Vmax (m/g):	5.0
vinax (m/s):	5.0
Unambiguous doppler (Hz): +/-	50.0
Unambiguous doppler (Hz): +/- Exact	50.0
Unambiguous doppler (Hz): +/- Exact Unambiguous velocity (m/s): +/-	50.0 5.0000016667
Unambiguous doppler (Hz): +/- Exact Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/-	50.0 5.00000016667 18.0000006
Unambiguous doppler (Hz): +/- Exact Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Approx	50.0 5.00000016667 18.0000006
Unambiguous doppler (Hz): +/- Exact Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Approx Unambiguous velocity (m/s): +/-	50.0 5.00000016667 18.0000006 5.0
Unambiguous doppler (Hz): +/- Exact Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Approx Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/-	50.0 5.00000016667 18.0000006 5.0 18.0
Unambiguous doppler (Hz): +/- Exact Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Approx Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Fdoppler (Hz): +/-	50.0 5.00000016667 18.0000006 5.0 18.0 50.0
Unambiguous doppler (Hz): +/- Exact Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Approx Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Fdoppler (Hz): +/-	50.0 5.00000016667 18.0000006 5.0 18.0 50.0
Unambiguous doppler (Hz): +/- Exact Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Approx Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Fdoppler (Hz): +/-	50.0 5.00000016667 18.0000006 5.0 18.0 50.0 256
Unambiguous doppler (Hz): +/- Exact Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Approx Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Fdoppler (Hz): +/-	50.0 5.00000016667 18.0000006 5.0 18.0 50.0 256 0.390625
Unambiguous doppler (Hz): +/- Exact Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Approx Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Fdoppler (Hz): +/- Doppler bins (total): Doppler resolution (Hz): Doppler integration time (s):	50.0 5.00000016667 18.0000006 5.0 18.0 50.0 256 0.390625 2.56
Unambiguous doppler (Hz): +/- Exact Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Approx Unambiguous velocity (m/s): +/- Unambiguous velocity (km/hr): +/- Fdoppler (Hz): +/- Doppler bins (total): Doppler resolution (Hz): Doppler integration time (s): Doppler resolution (m/s):	50.0 5.00000016667 18.0000006 5.0 18.0 50.0 256 0.390625 2.56 0.0390625013021

CODAR

Mapping ocean currents with HF RADAR •

http://gyre.umeoce.maine.edu/gomoos/codar/

http://cordc.ucsd.edu/projects/mapping/maps/

Mixing (Nulling) or Gating (Switching)

- TX & RX same site (monostatic)
- Remove TX signal at receiver before digitising (avoid saturation)
- Discontinuous TX (gating TX signal)
- Gating produces AM sidebands in frequency domain

lonosphere

- Will reflect CODAR waveform!
- Can image ionosphere

ATSC Live Passive RADAR

- Use known 511 PN synchronisation sequence
- ~41 Hz Data + FEC Segment +7 Sync • ~28 m +3-Levels Before Pilot +1 Insertion • +/-~5 m/s -1 -3 -5 -Symbols -7 Symbols 1 Byte 1 Byte 828 Symbols = 187 Data Bytes + 20 Parity (R-S) Bytes

832 Symbols = 188 byte MPEG data packet + 20 Parity bytes = 1 segment

http://www.tek.com/document/primer/fundamentals-8vsb

Bistatic Geometry

- Range is path from transmitter to object +
 reflection to receiver
- Important to remind yourself: not monostatic
- Factors:
 - Position of transmitter
 - Position of receiver
 - RCS of target (consider surfaces)

Hacking the Wireless World with #sdr

First Person View

- Analog video = low latency (no encoder/decoder delay)
- 5.8 GHz band

dronepedia.xyz

Composite video (FM)

Wikipedia

http://www.oocities.org/yehcheang/Composite_horizontal_blanking.htm

Simple Decoder

- Black & white (luminance only)
- Matched filter for vertical sync
- Read out fixed number of samples for raster
- Adapt resampler to match expected vertical sync rate
- Handle interlacing (even/odd fields)

Vertical Sync Matched Filter

• Determine even/odd field immediately after V Sync

Rate matching

- V Sync filter output fed to peak detector
- DPLL locks to pulses
- Rate Synchroniser uses DPLL period & target rate

Not Quite...

• Wouldn't lock

It's not NTSC, it's PAL!

💻 🛇 🐨 d 💲 奈 🗔 🕪) 100% 🖼 Tue 1:49 J Radio Companion

Paint]

[Sinks]

1

[Sources] Stream Ope

Peak Detect [Resamplers]

n: 100m

36233

1953831e-07), reported period: 166829.526315 (ratio: 2.38925207756), ratio diff: 3.1546963486e-07, locked: True 7760944e-07), reported period: 166829.473684 (ratio: 2.38925132379), ratio diff: 1.19024790024e-11, locked: True 7760944e-07), reported period: 166829.526315 (ratio: 2.38925207756), ratio diff: 3.15469213419e-07, locked: True

Thank you!

You can't protect what you can't see.

@spenchdotnet

balint@bastille.net

GitHub: balint256

GitHub: BastilleResearch

